Exploration of Starch from Cassava Peel Waste as an Alternative Carbon Source for the Growth Medium of Rhizopus oligosporus Saito

Authors

  • Alima Assaajidah Universitas Negeri Malang
  • Evi Susanti Universitas Negeri Malang
  • Indra Kurniawan Saputra Universitas Negeri Malang

DOI:

https://doi.org/10.29303/profood.v11i1.513

Keywords:

Kulit singkong, media pertumbuhan, Rhizopus oligosporus Saito

Abstract

Cassava (Manihot esculenta Crantz) is an important staple food for around 800 million people, mainly in tropical regions, with global production increasing by around 100 million tons since 2000. In Indonesia, increased cassava consumption also generates cassava peel waste, which is generally discarded or used as low economic value animal feed. Poorly managed disposal can lead to environmental pollution and methane gas emissions. Cassava peel, with a starch content of up to 36%, has the potential as an alternative medium for microorganism growth that is cheaper than commercial media such as Potato Dextrose Agar (PDA). This study aims to utilize cassava peel waste as a growth medium for Rhizopus oligosporus Saito, a fungus used in food fermentation and capable of producing high-value secondary metabolites. So it is necessary to develop alternative media that are efficient and environmentally friendly for microbial growth. The research methods included characterization of R. oligosprus Saito, inoculum preparation, cassava peel starch powder preparation, and optimization of cassava peel starch concentration, glucose, and media pH using Submerged Fermentation (SmF). The results showed that R. oligosprus Saito can grow on cassava peel-based alternative media with optimum conditions at 40 g/L cassava peel starch, 10 g/L glucose, and pH 6 – 6.5. This research shows the potential of cassava peel as an economical and environmentally friendly carbon source, while supporting the development of biotechnology products based on organic waste.

References

Acheampong, N. A., Akanwariwiak, W. G., Mensah, M., Fei-Baffoe, B., Offei, F., Bentil, J. A., & Borquaye, L. S. (2021). Optimization of hydrolases production from cassava peels by trametes polyzona bkw001. Scientific African, 12, e00835. https://doi.org/10.1016/j.sciaf.2021.e00835.

Agista, A. Z., Chien, Y.-S., Koseki, T., Nagaoka, H., Ohnuma, T., Ohsaki, Y., Yeh, C.-L., Yang, S.-C., Ardiansyah, Budijanto, S., Komai, M., & Shirakawa, H. (2024). Investigation of Rhizopus oligosporus metabolites in fermented wheat bran and its bio function in alleviating colitis in mice model. Metabolites, 14(7), 359. https://doi.org/10.3390/metabo14070359.

Azzahra, S., & Halkis, M. (2022). Fermentation of cassava skin as additional octan value of fuel. Journal of Energy Research and Reviews, 11(2), 31–35. https://doi.org/10.9734/jenrr/2022/v11i230274.

Badmos, S. A., Adesanmi, A. J., Tijani, M. O., Adeyinka, O. T., Babatunde, P. F., Sanusi, A. B., Ifijeh, O. J., & Ayoola, A. J. (2021). Production and optimization of alpha amylase from Aspergillus niger using TME 419 cassava peel as substrate. African Journal of Biological Sciences (South Africa), 3(4), 50–59. https://doi.org/10.33472/AFJBS.3.4.2021.50-59.

Black, W. D. (2020). A comparison of several media types and basic techniques used to assess outdoor airborne fungi in Melbourne, Australia. PLOS ONE, 15(12), e0238901. https://doi.org/10.1371/journal.pone.0238901.

Chettri et al. (2015). Fermentation of food waste to produce bioactive compounds: potential applications of fungi. Critical Reviews in Biotechnology, 36(1), 1-11.

Guneser, O., Demirkol, A., Yuceer, Y. K., Togay, S. O., Hosoglu, M. I., & Elibol, M. (2017). Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Brazilian Journal of Microbiology, 48(2), 275–285. https://doi.org/10.1016/j.bjm.2016.08.003.

Indriyati, O., Nurrahmania, V., & Wibowo, T. (2022). Pengolahan limbah kulit singkong sebagai upaya mengurangi pencemaran lingkungan. Jurnal Pengolahan Pangan, 7(1), 33–37.

Jagat, L. M. S. S., Darmayasa, I. B. G., & Wijana, I. M. S. (2021). Potential Rhizopus spp. in control the growth of Aspergillus flavus FNCC6109 in broiler chicken concentrate feed. Jurnal Biologi Udayana, 25(2), 147. https://doi.org/10.24843/JBIOUNUD.2021.v25.i02.p06.

Khalil, K. (2022). Values of cassava tuber peels produced in the farms and home-scale snack food industries as feed based on yield rate, crude nutrient, and mineral composition. Jurnal Sain Peternakan Indonesia, 17(2), 75–81. https://doi.org/10.31186/jspi.id.17.2.75-81.

Kielkopf, C. L., Bauer, W., & Urbatsch, I. L. (2020). Bradford assay for determining protein concentration. Cold Spring Harbor Protocols, 2020(4). https://doi.org/10.1101/pdb.prot102269.

Kolapo, A. L., Salami, R. O., Onajobi, I., Oluwafemi, F., Fawole, A. O., & Ebunoluwa, O. (2021). Detoxification and nutritional enrichment of cassava waste pulp using Rhizopus oligosporus and Aspergillus niger. Annals of the University Dunarea de Jos of Galati, 45(1), 52–68.

Komalasari, W. B., Sabarella, Manurung, M., Sehusman, Supriyati, Y., Rinawati, Seran, K., & Nanuri, M. D. (2023). Statistik Konsumsi Pangan Tahun 2023. In S. Endah & S. Wahyuningsih (Eds.), Pusat Data dan Sistem Informasi Pertanian (Issue December). Pusat Data dan Sistem Informasi Pertanian. https://repository.pertanian.go.id.

Lateef, A., & Kana, E. B. G. (2012). Utilization of cassava wastes in the production of fructosyltransferase by Rhizopus stolonifer LAU 07. Romanian Biotechnological Letters, 17(3), 7309–7316.

Liang, X., Gong, T., Chen, J.-J., Chen, T.-J., Yang, J.-L., & Zhu, P. (2023). Influence of long-term agar-slant preservation at 4°c on the recombinant enzyme activity of engineered yeast. Fermentation, 9(2), 104. https://doi.org/10.3390/fermentation9020104.

Lim, J., Nguyen, T. T. H., Pal, K., Gil Kang, C., Park, C., Kim, S. W., & Kim, D. (2022). Phytochemical properties and functional characteristics of wild turmeric (Curcuma aromatica) fermented with Rhizopus oligosporus. Food Chemistry: X, 13, 100198. https://doi.org/10.1016/j.fochx.2021.100198.

Lopes, P. H. S., Pasin, T. M., Benassi, V. M., Nelson, D. L., Oliveira, T. B. de, & Polizeli, M. de L. T. de M. (2024). Standardization of the cultivation of Rhizopus arrhizus using agroindustrial residues: high production of amylases in pineapple peel. Brazilian Archives of Biology and Technology, 67. https://doi.org/10.1590/1678-4324-2024240293.

Nuot, M.J.R., & Kiers, J.L. (2005) Tempe fermentation, innovation and functionality: update into the third millennium. Journal of Applied Microbiology, 98(4), 789–805. https://doi.org/10.1111/j.1365-2672.2004.02471.x.

Nurholipah, N., & Ayun, Q. (2021). Isolasi dan identifikasi Rhizopus oligosporus dan Rhizopus oryzae pada tempe asal Bekasi. Jurnal Teknologi Pangan, 15(1). https://doi.org/10.33005/JTP.V15I1.2742.

Pinta, Lolo, W. A., & Yamlean, P. V. Y. (2017). Identifikasi kandungan fitokimia dan uji kadar hambat minimum dan kadar bunuh minimum ekstrak etanol daun pangi (Pangium edule Reinw. ex Blume) terhadap pertumbuhan bakteri Eschericia coli. Pharmacon: Jurnal Ilmiah Farmasi, 6(3), 260–267.

Pondja Jr., E. A., Persson, K. M., & Matsinhe, N. P. (2017). The potential use of cassava peel for treatment of mine water in Mozambique. Journal of Environmental Protection, 08(03), 277–289. https://doi.org/10.4236/JEP.2017.83021

Prakash, O., Nimonkar, Y., & Desai, D. (2020). A recent overview of microbes and microbiome preservation. Indian Journal of Microbiology, 60(3), 297–309. https://doi.org/10.1007/s12088-020-00880-9

Pratiwi, Y. H., Ratnayani, O., & Wirajana, I. N. (2018). Perbandingan metode uji gula pereduksi dalam penentuan aktivitas ?-l-arabinofuranosidase dengan substrat janur kelapa (Cocos nucifera). Jurnal Kimia, 134. https://doi.org/10.24843/jchem.2018.v12.i02.p07.

Sephton-Clark, P. C. S., & Voelz, K. (2018). Spore germination of pathogenic filamentous fungi. In S. Sariaslani, & G. M. Gadd (Eds.), Advances in applied microbiology (Vol. 102, pp. 117–157). Academic Press. https://doi.org/10.1016/bs.aambs.2017.10.002.

Singh, N., & Gaur, S. (2021). GRAS fungi: a new horizon in safer food product. In X. Dai, M. Sharma, & J. Chen (Eds.), Fungi in sustainable food production (pp. 27–37). Springer. https://doi.org/10.1007/978-3-030-64406-2_3

Sriyana, H. Y., & Nasita, U. (2019). Karakteristik bioetanol hasil fermentasi kulit singkong. Jurnal Inovasi Teknik Kimia, 4(2), 1–5. https://doi.org/10.31942/inteka.v4i2.3012

Suryati, S., Meriatna, M., & Marlina, M. (2017). Optimasi proses pembuatan bioplastik dari pati limbah kulit singkong. Jurnal Teknologi Kimia Unimal, 5(1), 78. https://doi.org/10.29103/jtku.v5i1.81

Tonukari, N. J., Anigboro, A. A., Avwioroko, O. J., Egbune, E. O., Ezedom, T., Ajoh, A. I., Edema, U., Apiamu, A., & Aganbi, E. (2023). Biochemical properties and biotechnological applications of cassava peels. Biotechnology and Molecular Biology Reviews, 14(1), 1–8. https://doi.org/10.5897/BMBR2023.0292

Wachid, M., & Ningrum, D. A. (2017). Media dari kulit singkong untuk pertumbuhan Saccharomyces cerevisiae dan aplikasi pada roti. Seminar Nasional Dan Gelar Produk (pp. 592–599). Universitas Muhammadiyah Malang.

Wahyuningtyas, D., Sukmawati, P. D., & Fitria, N. M. A. (2019). Optimasi pembuatan plastik biodegradable dari pati kulit singkong dengan penambahan asam sitrat sebagai crosslinking agent. Prosiding Seminar Nasional Teknik Kimia “Kejuangan” (pp. 1–8). UPN Veteran Yogyakarta.

Yastanto, A. J. (2020). Karakteristik pertumbuhan jamur pada media PDA dengan metode pour plate Indonesian Journal of Laboratory, 2(2), 33–39.

Zhang, M., Xie, L., Yin, Z., Khanal, S. K., & Zhou, Q. (2016). Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresource Technology, 215, 50–62. https://doi.org/10.1016/j.biortech.2016.04.026

Downloads

Published

2025-05-31

How to Cite

Assaajidah, A., Susanti, E., & Saputra, I. K. (2025). Exploration of Starch from Cassava Peel Waste as an Alternative Carbon Source for the Growth Medium of Rhizopus oligosporus Saito. Pro Food, 11(1), 41–51. https://doi.org/10.29303/profood.v11i1.513