The Effect of Sprouting Duration on The Quality of Germination Cowpea Flour (Vigna Unguiculata (L.)
DOI:
https://doi.org/10.29303/profood.v11i2.566Keywords:
Bioactive compounds, cowpea, GABA, gamma-aminobutyric acidAbstract
Cowpea (Vigna unguiculata L.) is a local legume from East Nusa Tenggara (NTT) Province that contains various nutrients and bioactive compounds, such as polyphenols, Gamma-Aminobutyric Acid (GABA), and antioxidants. The germination process is one way to increase nutrients and bioactive compounds in legumes. This study aims to analyze the duration of gemination on the quality of cowpea sprout flour. This research employed an experimental method, with germination time as the variable, consisting of five levels: 0, 12, 24, 36, and 48 hours, and was replicated three times. The analysis conducted included physical tests, proximate analysis, GABA content, polyphenol total, and antioxidant IC50 activity. The best germination time is achieved with 24-hour germination treatment, resulting in the highest quality cowpea sprout flour after 24 hours, with sprout length of 23,41 mm, 100% growth percentage, 9,61% moisture content, 4,38% ash content (db), 1,02% fat content (db), 28,66% protein content (db), 56,35% carbohydrate content (db), GABA content of 106,09 mg/100 g, antioxidant activity IC50 of 18,96 mg/ml, and total polyphenols of 17,09 mg GAE/100 g. These results indicate an increase in bioactive compounds in cowpea due to the germination process, and have the potential to be a functional food ingredient. Therefore, the researchers hope that these findings can serve as a basis for developing food products with higher value.
References
Arinanti, M. (2018). Potensi senyawa antioksidan alami pada berbagai jenis kacang. Ilmu Gizi Indonesia, 1(2), 134–143.
Ariviani, S., Mudalifah, I., Ishartani, D., & Fauza, G. (2020). Investigation on antioxidant activity, protein, and whiteness degree of elicited Cowpea sprouts flour prepared with various drying technique. AIP Conference Proceedings. American Institute of Physics.
AOAC. (2017). Determination of total phenolic content using the folin-c assay: single-laboratory validation, first action 2017.13. Journal of AOAC international, 102(1).
AOAC. (2023). Official methods of analysis of AOAC International (22nd edition). Latimer, G. W. (ed.). Oxford University Press.
Asta, S., Maulana R, F., Ishartani, D., & Fauza, G. (2020). Antioxidant capacity and germination power of NaCl-elicited Cowpea (Vigna unguiculata) sprouts with various NaCl concentrations and elicitation durations. IOP Conference Series: Earth and Environmental Science. IOP Publishing.
Astawan, M., Wresdiyati, T., & Ichsan, M. (2016). Karakteristik fisikokimia tepung tempe kecambah kedelai. Jurnal Gizi Pangan, 11(1), 35–42.
Atudorei, D., Stroe, S. G., & Codina, G. G. (2021). Impact of germination on the microstructural and physicochemical properties of different legume types. Plants, 10(3), 1–19.
Buzera, A., Kinyanjui, P., Ishara, J., & Sila, D. (2018). Physical and cooking properties of two varieties of bio-fortified common beans (Phaseolus vulgaris L.) grown in DR Congo. Food Science & Quality Management, 71, 1–12.
Caceres, P. J., Penas, E., Martinez-Villaluenga, C., Amigo, L., & Frias, J. (2017). Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. Journal of Cereal Science, 73, 1–9.
Diniyah, N., & Lee, S. H. (2020). Komposisi senyawa fenol dan potensi antioksidan dari kacang-kacangan : review. Jurnal Agroteknologi, 14(01), 91–102.
Ekafitri, R., & Isworo, A. R. (2014). Pemanfaatan kacang-kacangan sebagai bahan baku sumber protein untuk pangan darurat. Jurnal Pangan, 23(1), 134–144.
Elvira, N., Wisaniyasa, N. W., & Hapsari, N. M. I. (2019). Studi Sifat kimia, fungsional, dan daya cerna protein tepung kecambah Kacang Tunggak (Vigna unguiculata (L.) Walp). Media Ilmiah Teknologi Pangan (Scientific Journal of Food Technology), 6(1), 43–53.
Ferdiawan, N., & Dwiloka, D. B. (2019). Pengaruh lama waktu germinasi terhadap sifat fisik dan sifat kimia tepung Kacang Tolo (Vigna unguiculata L). Jurnal Teknologi Pangan, 3(2), 349–354.
Ferreira, C. D., Bubolz, V. K., da Silva, J., Dittgen, C. L., Ziegler, V., de Oliveira Raphaelli, C., & de Oliveira, M. (2019). Changes in the chemical composition and bioactive compounds of chickpea (Cicer arietinum L.) fortified by germination. LWT, 111, 363–369.
Fransiska., & Suryani, T. (2024). Kualitas kefir kombinasi susu kacang tunggak dan susu skim dengan variasi jenis gula dan lama fermentasi. Jurnal Pendidikan Biologi dan Sains, 7(1), 216–228.
Guergouri, F. Z., Benboubetra, M., & Sobhi, W. (2017). Antioxidant activity of Algerian Nigella sativatotal oil and its unsaponifiable fraction. The Journal of Phytopharmacology, 6(4):234–238.
Hwang, C. E., Haque, M. A., Lee, J. H., Song, Y. H., Lee, H. Y., Kim, S. C., & Cho, K. M. (2018). Bioconversion of γ-aminobutyric acid and isoflavone contents during the fermentation of high-protein soy powder yogurt with Lactobacillus brevis. Applied Biological Chemistry, 61(4), 409–421.
Josipovic, A., Sudar, R., Sudaric, A., Jurkovic, V., Kocar, M. M., & Kulundzic, A. M. (2016). Total phenolic and total flavonoid content variability of soybean genotypes in Eastern Croatia. Croatian Journal of Food Science and Technology, 8(2), 60–65.
Lalopua, V. M. N. (2024). Deteksi senyawa bioaktif polifenol dan flavonoid dari ekstrak aseton makro alga Ulva lactuca di perairan Hulaliu Kecamatan Pulau Haruku. Jurnal Sistem dan Teknologi Informasi (JSTI), 6(2), 267–273.
Lorenza, R. (2023). Penerapan model predator-prey pada proses perkecambahan biji kacang hijau. Indonesian Journal of Applied Mathematics, 2(2), 44.
Martianingsih, N., Sudrajat, H. W., & Darlian, L. (2016). Analisis kandungan protein kecambah kacang hijau (Phaseolus radiatus L.) terhadap variasi waktu perkecambahan. Jurnal Ampibi, 1(2), 38–42.
Munarko, H., Sitanggang, A. B., Kusnandar, F., & Budijanto, S. (2019). Kecambah beras pecah kulit : proses produksi dan karakteristiknya. Jurnal Pangan, 28(3), 239–252.
Munarko, H., Sitanggang, A. B., Kusnandar, F., & Budijanto, S. (2020). Phytochemical, fatty acid and proximal composition of six selected Indonesian Brown Rice varieties. CYTA - Journal of Food, 18(1), 336–343.
Naisali, H., & Wulan, S. N. (2020). Karakteristik sensori tempe kacang tunggak hitam dan tempe kedelai. Jurnal Pangan dan Agroindustri, 8(1), 29–35.
Olabanji, I. O, Ajayi, O. S., Oluyemi, E. A., Olawuni, I. J., Adeniji, A. O., Olasupo, O. F., Agboola R. O, & Olusesi, I. M. (2018). Nutraceuticals in different varieties of cowpeas. American Journal of Food Science and Technology, 6(2), 68–75.
Putri, F. L. & Kartikawati, D. (2022). Optimasi konsentrasi ragi dan jenis pembungkus dalam pembuatan tempe kacang tunggak (Vigna unguiculata (L.) Walp.). Jurnal Agrifoodtech, 1(2), 103–118.
Rachim, F. R., Wisaniyasa, N. W., & Wiadnyani, A. A. I. S. (2020). Studi daya cerna zat gizi dan aktivitas antioksidan tepung kecambah kacang hijau (Phaseolus radiatus L.). Jurnal Ilmu dan Teknologi Pangan, 9(1), 1–9.
Sahab, N. R. M., Subroto, E., Balia, R. L., & Utama, G. L. (2020). γ-Aminobutyric acid found in fermented foods and beverages: current trends. Heliyon, 6(11), e05526.
Silva, M. B. R., Leite, R. S., de Oliveira, M. Á., & Ida, E. I. (2020). Germination conditions influence the physical characteristics, isoflavones, and vitamin C of soybean sprouts. Pesquisa Agropecuaria Brasileira, 55, e01409.
Sorour, M. A., El-Galel, H. A., Mehanni, A-H. E., & Ahmed, W. K. (2018). Polyphenols, tannins and phytate contents in some egyptian legumes as affected by soaking and germination processes. Journal of Sohag Agriscience, 3(1), 94–111.
Teleanu, R. I., Niculescu, A. G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M. (2022). Neurotransmitters key factors in neurological and neurodegenerative disorders of the central nervous system. International Journal of Molecular Sciences, 23(11), e5954.
Tiansawang, K., Luangpituksa, P., Varanyanond, W., & Hansawasdi, C. (2016). GABA (γ-aminobutyric acid) production, antioxidant activity in some germinated dietary seeds and the effect of cooking on their GABA content. Food Science and Technology (Brazil), 36(2), 313–321.
Vann, K., Techaparin, A., and Apiraksakorn, J. (2020). Beans germination as a potential tool for GABA-enriched tofu production. Journal of Food Science and Technology, 57(11), 3947–3954.
Winantoro, F. A., Ratnawati, D. E., & Anam, S. (2021). Klasifikasi fungsi senyawa aktif berdasarkan notasi simplified molecular input line entry system (SMILES) menggunakan metode random forest. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 5(4), 1250–1256.
Xu, M., Rao, J., & Chen, B. (2020). Phenolic compounds in germinated cereal and pulse seeds: classification, transformation, and metabolic process. Critical Reviews in Food Science and Nutrition, 60(5), 740–759.
Xue, Z., Wang, C., Zhai, L., Yu, W., Chang, H., Kou, X., & Zhou, F. (2016). Bioactive compounds and antioxidant activity of mung bean (Vigna radiata L.), soybean (Glycine max L.) and black bean (Phaseolus vulgaris L.) during the germination process. Czech Journal of Food Sciences, 34(1), 68–78.
Yang, Z., Xu, Y., Song, P., Li, X., Zhou, J., Lin, L., Xia, H., Liang, D., Luo, X., Zhang, H., Deng, Q., & Wang, Y. (2023). Effects of Gamma Amino Butyric Acid (GABA) on nutrient uptake of loquat (Eriobotrya japonica (Thunb.) Lindl) seedlings. Horticulturae, 9(2), 196.
Zhang, Q., Xiang, J., Zhang, L., Zhu, X., Evers, J., van der Werf, W., & Duan, L. (2014). Optimizing soaking and germination conditions to improve gamma-aminobutyric acid content in japonica and indica germinated brown rice. Journal of Functional Foods, 10, 283–291.





