POTENSI PIGMEN ALAMI DARI BAKTERI SIMBION KARANG Mantipora sp SEBAGAI PEWARNA MAKANAN
Potential of Pigment from Simbion Coral Bacteria Mantipora sp As a Food Color
DOI:
https://doi.org/10.29303/profood.v6i1.121Kata Kunci:
carotenoids, montipora, pigment, rhodococcus sp, karotenoidAbstrak
ABSTRACT
Color is very important in the food industry. The need for food coloring requires manufacturers to use synthetic dyes that have the potential to cause poisoning and cancer. One source of natural dyes comes from bacteria that are symbiotic with coral reefs. The purpose of this study is to isolate and characterize the bacterial pigment that has symbiosis with Montipora sp. The research method consisted of bacterial isolation and identification, pigment identification with UV-Vis spectrofotometer (200 – 800 nm) and TLC. The results of isilation and identification showed that Rhodococcus sp is dominant bacterial which is produces of carotenoiids for self defense from UV rays. The pigment found in Rhodococcus sp has the potential as a natural pigment for food coloring.
Keywords: carotenoids, Montipora, pigment, Rhodococcus sp.
ABSTRAK
Warna sangat penting dalam industri pangan. Kebutuhan pewarna makanan menuntut produsen memakai bahan pewarna sintetik yang berpotensi menyebabkan keracunan dan kanker. Salah satu sumber pewarna alami berasal dari bakteri yang bersimbiosis dengan terumbu karang. Tujuan dari penelitian ini adalah mengisolasi dan mengkarakterisasi pigmen bakteri yang bersimbion Montipora sp. Metode penelitian terdiri dari isolasi dan identifkasi bakteri, identifikasi pigmen dengan spektrofotometer UV-Vis (200 – 800 nm) dan KLT. Hasil isolasi dan identifikasi bakteri berjenis Rhodococcus sp dan piigmen yang dihasilkan adalah karotenoid yang digunakan sebagai pertahanan diri dari sinar UV. Pigmen yang terdapat pada Rhodococcus sp berpotensi sebagai pigmen alami untuk pewarna pangan.
Kata kunci: karotenoid, Montipora, pigmen, Rhodococcus sp.
Referensi
Arini, D.I.D. 2013. Potensi Terumbu Karang Indonesia“Tantangan dan Upaya Konservasinya” The Challengeand Conservation Efforts of Indonesian Coral Reefs. INFO BPK Manado Vol.3 No.2.
Chen, Y., Xie, B., Yang, J., Chen, J., Sun, Z.. 2017. Identification of microbial carotenoids and isoprenoid quinones from Rhodococcus sp. B7740 and its stability in the presence of iron in model gastric conditions. Food Chemistry doi: http://dx.doi.org/10.1016/j.foodchem.2017.06.067
Curragh, H. 1994. Haloalkane degradation and assimilation by Rhodococcus rhodochrous NCIMB 13064. Microbiology 140:1433–1442
DiSalvo, L,H. 1971. Regenerative function and microbial ecology of coral reefs: labeled bacteria in a coral reef microcosm. J Exp Mar Biol Ecol 7:123−136.
Fardiaz, S. 1989. Penuntun Praktikum Mikrobiologi Pangan. IPB. Bogor.
Geneaid. 2017. Instruction Manual Presto™ Mini RNA Bacteria Kit.Geneaid Biotech Ltd. https://www.geneaid.com/sites/default/files/RBB21.pdf
Haroune, N. 2004. Metabolism of 2-mercaptobenzothiazole by Rhodococcus rhodochrous. Appl. Environ. Microbiol. 70:6315–6319
Helmke, R., Weyland, H. 1984. Rhodococcus marinonascecs sp. Nob., an Actinomycete frem the Sea. International Journal of Systematic Bacteriology. 34)2):127-128.
Hill, R., Hart S., Illing, N., Kirby, R., Wood, D.R. 1989. Cloning and Expression of Rhodococcus Genes Encoding Pigment Production in Escherichia coli. Journal of General Microbiology 13: 1507-1513.
Hirabayashi, H., Ishii, T., Takaichi, S., Inoue, K., Uehara, K. 2004. The role of carotenoids in the photoadaptation of the brown-colored sulfur bacterium Chlorobium phaeobacteroides. Photochem Photobiol 79:280–285.
http://www.mdpi.com/20726643/6/2/546/htm (diakses 30 September 2019)
Ichiyama, S., Shimakata, K., S., Tsukamura, M., 1989. Carotenoid pigments of genus Rhodococcus. Micobial Immunol 33:503-508.
Johnson, E.A. and Schroeder,W.A. 1996. Microbial carotenoids. Advances in biochemical engineering/biotechnology 53:119–178.
Kilian O., Steunou A.S., Fazeli F., Bailey S., Bhaya D., Grossman, A.R. 2007. Responses of a thermophilic Synechococcus isolate from the microbial mat of Octopus Spring to light. Appl Environ Microbiol 73:4268–4278
Kim, B. Y., and H. H. Hyun. 2002. Production of acrylamide using immobi- lized cells of Rhodococcus rhodochrous M33. Biotechnol. Bioproc. Eng. 7:194–200
Libkind, D., Moline, M., Sampaio, J.P., van Broock, M. 2009. Yeasts from high-altitude lakes: influence of UV radiation. FEMS Microbiol Ecol 69:353–362.
Lutnaes, B.F., Strand, A., Petursdottir, S.K., Liaaen-Jensen, S. 2004. Carotenoids of thermophilic bacteria – Rhodothermus marinus from submarine Icelandic hot springs. Biochem Syst Ecol 32:455–468
Moline, M., Libkind, D., Dieguez Mdel C., van Broock, M. 2009. Photoprotective role of carotenoids in yeasts: Response to UV-B of pigmented and naturally-occurring albino strains. J Photochem Photobiol B 95:156–161.
Morii, S. 1998. 3-Ketosteroid-delta1-dehydrogenase of Rhodococcus rhodochrous: sequencing of the genomic DNA and hyperexpression, purifi- cation, and characterization of the recombinant enzyme. J. Biochem. 124: 1026–1032.
Nelis, H.J., de Leenheer, A.P. 1991. Microbial sources of carotenoid pigments used in foods and feeds. Journal of Applied Bacteriology 70:181–191.
Osawa, A., Kasahara, S., Mastuoka, S., Gassel, S., Sandmann, G., Shindo, K. 2011. Isolation of a Novel Carotenoid, OH-chlorobactene Glucoside Hexadecanoate, and Related Rare Carotenoids from Rhodococcus sp. CIP and Their Antioxidative Activities. Biosci. Biotechnol. Biochem., 75 (11), 2142–2147.
Prince, R. C., and M. J. Grossman. 2003. Substrate preferences in biodesulfurization of diesel range fuels by Rhodococcus sp. strain ECRD-1. Appl. Environ. Microbiol. 69:5833–5838.
Puspita, D., Tjahyono, Y.D., Samalukang, Y., Toy, B.A.I., Totoda, N.W. 2018. PRODUKSI ANTOSIANIN DARI DAUN MIANA (Plectranthus scutellarioides) SEBAGAI PEWARNA ALAMI. Pro Food (Jurnal Ilmu dan Teknologi Pangan). 4(1):298-303.
Radjasa, O.K., S.I.O. Salasia, A. Sabdono, J. Weise, J.F. Imhoff, C. Lammler, and M.J. Risk. 2007. Antibacterial activity of marine bacterium Pseudomonas sp associated with soft coral Sinularia polydactyla and against Streptococcus equi Subsp. zooepidemicus. Int. J. of pharmacology, 3(2):170-174
Speed T.J, Thamattoor D.M. 2002. Synthesis of montiporynes A and B. Tetrahedron Letters 43. 367–369.2002
Winarno F.G. 2004. Kimia Pangan dan Gizi. Gramedia Pustaka Utama. Jakarta.
Wusqy, N.K. Limantara L, Karwur F.K. 2014. Exploration, Isolation and Quantification of β-carotene from Bacterial Symbion of Acropora sp. Micriobiology Indonesia. Vol.8, No.2, June 2014 (58-64)
Yang, X. Q., . 2007. Characterization and functional analysis of a new gene cluster involved in biphenyl/PCB degradation in Rhodococcus sp. strain R04. J. Appl. Microbiol. 103:2214–2224.
Yamano, Y., Sakai, Y., Hara, M., Ito, M. 2002. Carotenoids and related polyenes. Part 9. Total synthesis of thermozeaxanthin and thermocryptoxanthin and the stabilizing effect of thermozeaxanthin on liposomes. J Chem Soc Perk T 1:2006–2013.